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Abstract--The flow of a highly dilute suspension of spheres (radius a) between two parallel ridid planes 
(distance L) in slow shearing motion is studied. Even for the limiting situation, (a/L) small but finite, there 
is a layer-one sphere diameter thick--immediately adjacent to the wall in which bulk quantities are so 
complicated functionals of the parameters of the microstructure that evaluating them seems out of the 
question. Nevertheless, it is still simple to obtain average bulk quantities (e.g. apparent viscosity) and even 
the evaluation of local bulk quantities far away from the wall poses no problem. The reason being that the 
customary continuum constitutive equation for the bulk stress can be utilized, although a slip velocity has 
to supplement it. This applies to any disperse system and can be applied to different flows, too. For the 
spherical suspension at hand an explicit expression for this slip velocity is obtained. 

1. I N T R O D U C T I O N  
Disperse systems, be it suspensions, emulsions, dispersions of macromolecular solutions, 
comprise a large group of materials of industrial importance. For many engineering fields it is of 
great importance to know how they respond to imposed forces or motions at their boundaries. 
This, however, is an extremely complicated problem even in situations where inertial effects 
play no role. 

To see where the crux of the problem comes in we must realize that any disperse system 
may be regarded as a macro-continuum, provided the particle dimensions (say a) are small in 
comparison with the dimensions (say L) of the walls bounding the system. Assuming this to be 
the case one can, for a given microstructure, determine the rheological properties of this 
continuum (at least in principle), i.e. a relation between its bulk properties. This relation, called 
constitutive equation characterizes the macro-continuum. Close to a wall, however, the bulk 
properties are not only influenced by the microstructure of the disperse system but also by the 
wall. Admittedly, for (a/L)~ 1 this wall layer, where conditions are untypical, will be thin. 
Nerertheless, since the (a]L)-.O limit, which the constitutive equation demands, can never be 
achieved in practice, it is important to know what happens if (alL) is small, but finite. 

To this end we study the flow of a dilute suspension of neutrally buoyant spheres (radius a) 
between two rigid planes (distance L) in steady relative shearing motion. We shall assume that 
all conditions, which the constitutive equation of Einstein demands, are met. The bulk viscosity 
p. of the suspension thus is/x,(1 + 2.5~po), where tp0 denotes the volume fraction (~Po ~ 1) and/Zs 
the viscosity of the solvent. 

The most important quantity of the suspension will be the shear stress. Knowing that it has to be 
constant implies that one can use its asymptotic, i.e. far away (from the wall) value. It is thus given 
by the Einstein relation. The problem now consists in determining the far away shear rate, called 
q(~), which appears in that expression. This is not to be confused with the applied shear rate. As a 
matter of fact by extrapolating (the unknown) qt®) up to the wall, a relation to the known applied 
shear rate emerges. The difference between q(®~ and the applied shear rate can be written as 
(2uJL),t where for obvious reasons us is called slip velocity. Under the customary assumption that 
the true suspension adheres to the wall an explicit expression for us is derived. It is demonstrated 
that u, does not require detailed knowledge of the bulk velocity close to the wall. 

If V, denotes the velocity of the moving plane the slip velocity reads 

u~ = A I:. ~ #o, [I.I] 

tNote that we have two walls. 
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with a dimensionless slip coefficient A. This coefficient is estimated as 1.45. Being positive the 
suspension will thus show the so called sigma-phenomenon (e.g. Goldsmith & Mason 1967). 
Consequently, even though the spheres are uniformly distributed over the region accessible to 
them the apparent viscosity (ratio of bulk shear stress to applied shear rate) is lower in small 
instruments than in larger ones. The presence of a wall, modifying the behavior of a single sphere 
(and thus of the whole suspension) is responsible for that effect. 

The hydrodynamic wall effect for a dilute suspension of spheres has also been studied by 
Guth & Simha (1936) and by Vand (1948). While Vand lists a slip coefficient of 3.25 the slip 
coefficient of Guth-Simha's result for 2-dim. shear (they considered an extensional flow) would 
be - 1.05. It is demonstrated that in both articles the naive handwaving arguments employed and 
not computational errors led to erroneous results. The most comprehensive study of wall effects is 
due to Tfzeren & Skalak (1977). They calculated bulk properties for arbitrary distances from a 
wall. Based on these minute calculations one can follow an alternate (but less efficient) route to 
obtain us, and extrapolate their numerical results for the far away bulk velocity up to the wall. 

The concept of a slip velocity applies to any disperse system (e.g. Cox and Brenner, 1971). With 
the exception of evaluating local bulk quantities close to the boundary, it is needed to obtain the 
proper bulk quantities far away from the wall as well as for the evaluation of average global 
properties (like the apparent viscosity). More explicitely these quantities can indeed be evaluated 
by use of a customary constitutive equation (which is valid only for unbounded systems) provided 
a slip velocity us is introduced. This has nothing to do with slippage along the wall of the actual 
disperse systems. Quite to the contrary, the explicit expression for the slip velocity us derived in 
this paper rests on the adherence requirement of the suspension. Once us is known for 2-dim. shear 
the effects of a small but finite (a/L)-ratio for different types of flow are readily estimated. 

2. THE HYDRODYNAMIC PROBLEM 

Let us consider a single sphere (radius a, surface So, volume Vo) immersed in an in- 
compressible Newtonian fluid (viscosity ~,) if a plane wall W (unit normal n pointing towards 
the fluid) bounds this system. In general, the motion of the sphere will consist of a translational 
velocity of its center ro (denoted by Uo) and an angular velocity to. Assuming inertial effects to 
be negligible the mathematical formulation of our problem reads 

~r " u = 0, [2.1a] 

+ ~,Veu = O, [2.1b] 
c~r 

subject to the boundary conditions 

u = uo + to x ( r -  ro) o n  So, [2.2] 

u = 0 o n  W, [2.3] 

u - ~  u ~ ( r )  1 ,  , p --, p<~)(r)J Ir - rol ~ oo, r ~ W. [2.4] 

Here (u ¢®), p~)) stand for the velocity and pressure field, respectively, if the sphere is absent. 
These may be arbitrary except for the requirement that they satisfy the creeping motion 
equations [2.1] as well as the adherence condition [2.3] on the wall. This being the case we can 
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introduce the disturbance fields (v, p), 

V = U - -  U (~), 

/~ = p - p(~). [2.5] 

They, too, satisfy the differential equations [2.1a, b] but the appropriate boundary conditions 

are 

v = no+ ~o x ( r - r o ) - U  (~) on So, [2.6] 

v = 0 on W, [2.7] 

v - * 0 ~  J r -  rol---> ~ , r ~  W. 
p - * 0 J  

[2.8] 

This corresponds to the problem of a sphere with a prescribed velocity at its surface So, 
suspended in a quiescent Newtonian fluid which is bounded by a stationary plane wall W. 

Only the variation of u (®) over the particle surface is needed. But u (®) can vary substantially 
only over macroscopic dimensions, i.e. dimensions which are large in comparison to the sphere 
radius a. Consequently, as far as [2.6] is concerned a Taylor expansion around the sphere 
center seems appropriate and we put 

u(®)(r) = u ° + I I  x (r - ro) + (r - ro)" e,  [2.9] 

where 12 is one half the vorticity vector and e the rate of strain dyadic (all quantities evaluated 
at ro). Equation [2.6] now reads 

v = (no - u °) + (oJ - II) x (r - r0) - (r - ro)" e on So. [2.10] 

The interpretation of this equation is obvious. 
If t t denotes the stress tensor of the fluid the force F, couple G and stresslet s (the latter two 

with respect to ro) which are exerted upon the particle (surface normal ns) are defined as 

F = fso dA as • t t, [2.11a] 

G = L dA ( r -  ro) x ns" t t, 
o 

[2.11b] 

s = A(2): f dA [n, • d ( r -  r0)-  2/z,n,u]. [2.11c] 
J $o 

Here A(2) is a fourth order tensor which upon operation on any second order tensor extracts the 
symmetric and irreducible part of that tensor. Its cartesian components are thus 

A(2) 1 1 
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For later rderence we should point out an alternate form for the stresslet, namely 

s = A(2): fv0d Vt p. [2.12] 

This simple relation is valid for any rigid particle, which is freely suspended (F = 0, G = 0). The 
integration of t t~), i.e. the particle stress tensor, extends over the volume V0 of the particle. 

For our problem, the linearity of the differential equations [2.1] as well as of the boundary 
conditions [2.7], [2.8] and [2.10] implies that the result must be of the form? 

F =/~s {'K. (u ° - Uo) + tR. (fl - co) + tQ :e}, [2.13a] 

G = / ~  {(u°-Uo) • t R +  rR" (,0,-ca) + rQ:e}, 

s = # ,  { (u°-Uo)  • tQ + (1] - o~). 'Q + D:e},  

[2.13b] 

[2.13c] 

with 

'K# = 'Kji, rRij = "R~i, Di~ = Da o. [2.141 

Without the presence of a wall the tensors appearing on [2.13] are termed material tensors 
since only a dependence upon the particle size and shape is possible. In our case these tensors 
must reflect the geometry of the system (sphere and plane wall with unit vector n). Expressed in 
an arbitrary cartesian coordinate system we consequently must have 

% = K,n,n~ + Kl(8,j  - n,ns), 

tR# = R~iij, ng, 

'Qok = [Q18i~,n~ + Q2nin~,n~]A~)~jk, 

'R i i  = Ripnini + R±(8#  - n in i ) ,  

rQiik = Qei~,~n~n,A~,~jk,(2) 

Do ~ (2) (2) (2) = DiA,i.tt + D2Aii.~,vA~.ttn~,n~ 

(,2) (2) n n + D3Aij.~,~A,~p.ttn~, v ,~na. 

[2.15a] 

[2.15b] 

[2.15c] 

[2.15d] 

[2.15e] 

[2.15f] 

A summation over repeated Greek indices is implied. Note that these tensors automatically 
satify [2.14], although this relation has not been used in deriving [2.14]. 

Eleven scalar coefficients are thus needed. Obviously they depend upon the distance d of 

TThe fact that only 6 independent tensors appear in [2.13] as well as the validity of [2.14] can be shown in an analogous 
fashion as for the case in which no wall is present (Hinch 1972). 
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the sphere center to the wall. For example, if the sphere is sufficiently far from the wall (such 
that the method of reflections can be used) one knowst (Lichtenth~iler 1979) 

9 1(a$31 -' 
Kll=6~'a [ 1 - ~  ( ~ ) + ~  \ d , J  ' 

9 a 1 a 3-1 
K±=61ra  [ 1 - ~  ( ~ ) + g  (~)  ] , 

R = - ~ Ira 2 -~ . 

(°)2 
Q 2 = - - 8  ~ra2 2 ' 

I/  31 -' 
R, = 8~'a 3 [I -~ td! .I ' 

5 ("Vl-'  
- Y~ t~l ] ' 

5 (af 
Q = ~ "ra3 -d ' 

Dl = 2__~.~ Tra3 [ l _ _~ ,a \3 1 (a~' l - I  tT) t T l  ] ' 

d 3 d $ 

D3--2-~.a3[~2(-~)3+O((-~)5)]. [2.16] 

For some of the coefficients (like K~, R and R I) exact results are known. In all these cases it is 
found that [2.16] approximates these results quite well even for distances as low as one sphere 
diameter (Goldman et ai. 1967). We thus expect qualitatively the same behavior for all the other 
coefficients, too. 

Of special interest to us will be the stresslet for a freely suspended particle. Putting F = 0 
and G = 0 one can readily invert [2.13a] and [2.13b] to obtain up and o,, respectively. Inserting 
this into [2.13c] we get by recalling [2.15] 

with 

and 

s =/~s {Die + Aa): [D~nn • e + D;nnnn: e]}, 

tAccuracy up to the terms retained. 

[2.17] 

D~ = D3 (Q1 + Q:)2 K, (D~- D2). [2.lab] 

D~ = I)2 + Q'2RI + 2RQQ, + Q2K± 
R 2 - K i R l  ' [2.18a] 
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The difference of D~ and D~ to /92 and /)3, respectively, is a reflection of the fact that the 
particle in general does not move with the fluid. The exception being a flow for which n. e = 0. 
In this case the particle not only is carried along with the fluid, but the relation of s to e is then 
of the same form, as in the wail-free case (only the DI appears). This was the situation studied 
by Guth-Simha (1936). 

3. THE STATISTICAL PROBLEM 

Let us consider a two-dimensional shear flow of a highly dilute suspension of identical 
spheres of radius a. The flow shall be bounded by the planes y = 0 and y = L, respectively, 
where the upper plate is moving with constant velocity Vwi. If n(r) denotes the number of 
spheres (actually sphere centers) per unit volume at r the conservation equation 

0 
Or" (uon) = 0 [3.11 

applies in the steady state. The velocity Uo is determined by [2.13a, b] via a force and couple 
balance, 

F = - F (B~) = kT ~r In n, 

G = 0, [3.21 

where F ~B~) denotes the Brownian motion force. Consequently, since the unit normal of the wall 
is j for y = 0 and - j for y = L it has to be of the formt 

Uo = u ° + a l j"  e + a2jjj :e  + a3jj" F ("~) + a4 (8  - j j ) '  F m'). [3.31 

It is not necessary to list the ai explicitely, but it is important to keep in mind that they are 
functions only of y. Since n itself can also depend only upon y, [3.3] reduces in our case to 

1 uo = i [ qy + ~ alq l + jkTa3-~y ln n, [3.4] 

where q = (VJL)  is the applied shear rate. The diffusion equation [3.1] thus reads 

0 0 
-~y (a3-~--} n) : 0. [3.5] 

Since the normal flux of particles to the walls has to be zero, i.e. 

O 
a37yyn=0, a t y = a  and a t y = L - a  [3.6] 

the solution to [3.5] is 

no =const., a < y < L - a  
n(r)= 0, otherwise. [3.7] 

tNote that for the flow between 2 plates [2.15] still apply. 
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Thus, for the flow between two rigid parallel planes in steady relative shearing motion the 
distribution of spheres of a highly dilute suspension is uniform over the region accessible to the 
particles. 

This result implies that no Brownian motion force is exerted upon the particles. Con- 
sequently equation [2.17] for the stresslet holds and simplifies for 2-dim. shear to 

s = #~ ~ (D~+~D~) (ij+ji) [3.81 

for the stresslet holds. 

4. THE SLIP VELOCITY FOR A S U S P E N S I O N  OF SPHERES 

Let us again consider the situation described in section 3, namely the flow of a highly dilute 
suspension of spheres between two planes, say y = 0 and y = L, where the lower plane is at rest 
and the upper plane is moving with constant velocity Vwi. If the spheres are much smaller than 
the distance between the planes, i.e. 

d 0 < ~  1 [4.1] 

it makes sense to regard the suspension as a macro-continuum. 
Using capital letters to characterize bulk quantities the bulk velocity V will obviously be of 

the form 

V = i V(y)  [4.2] 

satisfying the boundary conditions 

V = 0 at y = O, [4.3a] 

1 L 
V = ~ V, at y = ~-. [4.3b] 

While [4.3b] holds quite generally due to the symmetry of the problem (in the limit of [4.1]) 
[4.3a] assumes the the bulk fluid adheres to a solid surface, which is the customary assumption. 
By means of a macroscopic force balance the bulk shear stress has to be constant, 

Tyx = const. [4.4] 

so that the problem is to relate Tyx and V. 
It is clear that the Einsteinian expression (emphasized by the superscript E) 

T¢~) _ d V 5 d V 
yx - ~, ~ + ~ ~o~, -d'y-y ' [4.5a] 

with 

~o = no Vo [4.5b] 

is justified only in the limit (a/L)--,O (~Oo fixed), since in that case one is always far away from 
the wail. Since this hypothetical limit can never be achieved in practice let us try to see what 
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happens if (all) is small, but finite. In this case, we need to consider only the half space 
0 < y < (/_,/2) (see [4.3b]). 

Clearly, far away from the wall Tyx has to approach its asymptotic value T (~) i.e. A y x  

Ty, = --T(E)yx for y >> 1. [4.6] 
a 

Closer to the wall, where the influence of the wall needs to be taken into consideration we 
expect area averages to represent properly the relevant bulk quantities. To this end we assume 
that A is a macrodifferential area parallel to the y = 0 plane. From a microscopic point of view 
its linear dimensions should be large in comparison to the average interparticle spacing. (It 
therefore cuts through both ambient fluid and particles.) Consequently the bulk rate of strain 
dyadic, Ey,, has to be defined as 

1 E,, = -~ [ fA_~A dA e[, + ~ L dA e~, }. [4.7] 

The superscripts f and p, respectively, characterize the fluid and particle phase, Ap denotes that 
portion of A which cuts through a particle and the summation is over all particles which are 
intersected by A. Since e~ ~ = 0 for any rigid particle we can drop the second term. Similarly, since 

try, : 2~,efy, [4.8] 

is the shear stress in the fluid phase, the definition of bulk shear stress reads 

Ty, =l{21~,L_~ApdAetyx-~ + ~ L dA' t~,}. 

Combining [4.7] and [4.9] and using the identity 

we get  

with the particle contribution 

[4.9] 

dV+ Ty*, [4.11] Tyx =~,  dy 

1 T*x=-~ ~,p fApdA[tPy,]. [4.12] 

Consequently, it is T*x which poses problems. We know, however, the far away limit of T*,, 
termed T,t®) since by [4.5a] and [4.6] we have 

T,(®) = 5 d V yx 2 tpo/~, ~ - .  [4.13] 

To demonstrate that this is indeed so we recall section 3. There it was shown that the 

l d V  
Ey, = 2 dy '  [4.10] 
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(identical) spheres are unifromly distributed over the region accessible to them. This implies the 
relation 

n = n(y) = noH(y - a), [4.14] 

where H(x) is the Heaviside step function. 
If y denotes the distance of the averaging area to the wall [4.12] can thus be written as 

' y+a  fA T*x = T*~(y) = no Jy-a dylH(Yl- a) dA(t~x), 
I 

[4.15] 

with A1 the circular area 

X2 + Z2 = a 2 _ (y _ yl)2. [4.16] 

Especially, if the averaging area A is more than one sphere diameter away from the wall the 
Heaviside function in [4.15] is identically equal to one (corresponding to the fact that the 
probability of A being intersected by a sphere whose center lies above it equals the probability 
of intersection by a sphere whose center lies below it). The integral of [4.15] thus becomes an 
integral over the volume of one sphere (recall [4.16]). By [2.12] the relation 

T*x = nosy, for y > 2a [4.17] 

to the stresslet follows (Batchelor 1970). Since Syx is given by [3.8], the identity [4.13] emerges by 
using the far away limit of [2.16].t 

Close to the wall, i.e. for y < 2a, [4.15] has to be used as it stands. Since it involves knowledge of 
shear stresses inside the particle even a simple problem like 2-dim. shear of a highly dilute 
suspension of spheres is in reality an extremely complicated one. Note that since T*x depends upon 
y the shear rate must depend upon position, too. 

The primary interest, however, of such a flow will clearly be the shear stress. Since this is 
constant we can obviously use its far away limit, i.e. Einstein's result. Furthermore, in this 
region the bulk shear rate has to be constant (otherwise Tyx will not be constant), say qt=), 

d r / =  q(®) for y >> a. [4.18] 
dy 

Consequently we need to know the relation between the applied shear rate, (Vw/L), and q(=). 
However, by recalling the results obtained so far 

T,x - d V + T*(~=> -/~s ~ T*x =/~sq (®) + = const., 

a simple integration furnishes by means of [4.3] the desired relation in the form 

[4.19] 

q(®) L Vw 
~- + us = T '  [4.20] 

tSince [4.15] already contains no we can, in the expression [3.8] for s,x replace the applied shear rate q by the bulk 
shear rate, since the difference between them is due to the particles. 
MF Vol. 7, No. 2-=G 
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Figure 1. 

with u, the slip velocityt (see figure 1) 

l fo u, = - - -  lim dy(T*x- _yxT*(~)~,. [4.21] 
~s (LJ2)-~o 

Thus, to describe the flow properties of a suspension in the interior region and also to obtain 
correct average quantities in a bounded system one can indeed use classical continuum 
mechanical constitutive equations (which are always derived for an unbounded domain), 
provided a slip velocity is introduced. This has nothing to do with slipping of the true 
suspension, since [4.21] was derived via the assumption that the solution adheres to the wall. 
The slip velocity is simply a reflection of the fact that one has a bounded system. Failure to 
take this boundedness into account in the constitutive equations is accounted for via the 
introduction of the slip velocity, provided one is not interested in the detailed nature of the flow 
close to the wall. Should this be the case one does have to use constitutive equations taking the 
wall directly into account. This was the case studied by T6zeren and Skalak (1977). 

useless. 
Returning to our situation we insert [4.15] into [4.21]. Interchanging the order of the y and y' 

integration, 

' H ( y ' -  a ) . . .  = y' dy . . . .  
.B y--a  ~' y ' --a  

we again encounter an integral of t~x over the volume of a sphere. By means of [2.12] and [4.12] this 
implies the result 

5 [noS,x(y')-~ ~,,¢oq'~)]. us=~poq(®)a-lffdy ' [4.22] 

This expression, which has rigorously been derived, contains only the stresslet. It is a striking result 
because the region y < 2a is the principal region in which wall effects occur. And within this region 

tThe limiting process (L/2)-*~ of [4.21] characterizes the situation (alL) small but non-zoto, we are considering. 
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[4.15] has to be used as it stands and cannot be cast in the form 

T*x = nSyx ,  [4.23] 

with n given by [4.14]. It is this reason which makes the evaluation of local quantities like T*x so 
complicated (see T6zeren et al., 1977). In our case we focus attention not on T*x but rather on an 
average of that quantity (see [4.21]). This, and the interchange of the order of integration leads to 
[4.22]. Quite remarkably this equation also emerges if one uses the incorrect expression [4.23]. 

By means of [3.8] (recall also the footnote on p. 229 we can extract the parameter 
dependencies and the final expression for us becomes 

d 2 us = A~ooq(®)a = Aq~o Vw ~ +  0(~o ), [4.24a] 

with the dimensionless slip coefficient 

5{1-1f;dy,[D.I+(1/2)D2 A=~ 5Vo - 1 ] } .  [4.24b] 

The slip velocity directly determines the apparent viscosity #,. This is defined by the 
relation of the shear stress to the applied shear rate (VJL), i.e. 

By means of [4.191 and [4.201 we get 

with 

• 2us 1 
#, =/~ [1 --~-~-J, [4.251 

/L = #s (1 +~ ~Oo), [4.26] 

the true viscosity of the suspension. Consequently a positive slip coefficient ~ (positive us) 
implies a decrease of/~a by decreasing the dimensions of the viscosimeter. This effect, termed 
sigma phenomenon, is indeed observed for many suspensions (Goldsmith & Mason 1967). As 
far as a dilute suspension of spheres is concerned it is solely due to the fact that the behavior of 
a particle is directly influenced by the wall (see [2.12] and [2.14]). The other expected source of 
its origin, namely a totally different expression of the particle stress tensor T*x close to the wall 
than far away from it apparently is immaterial as the remarks following [4.22] reveal. Although 
a particle free layer adjacent to the wall would also lead to the sigma effect such an 
"explanation" is not possible for a dilute suspension since by section 3 the spheres are 
uniformly distributed over the accessible region y _> a.t 

The expression [4.24b] for the slip velocity can also be written as 

with 

1 Tyx, [4.27a] Us ----~ 

u 
/3 = Aa~po" [4.27b] 

tNote, however, that the local bulk concentration (defined as an area average) is not constant for y < 2a. 
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This implies that slipping is resisted by a tangential force. Equation [4.27a], which on an ad hoc 
basis has been introduced by Lamb (1932), thus follows rigorously from our analysis. General- 
izing it according to 

1 
u~-V~ = ~ n × ( n . T × n ) ,  [4.28] 

with T the bulk stress tensor of the disperse system ¢T <E) in our case) and Vw the velocity of the X ~ y x  

boundary enables one to estimate the effect of small, but finite (a/L)-ratios for a variety of 
different flows (e.g. Brunn 1975). 

This same generalization is possible if we introduce the concept of a particle depleted layer 
close to the wall. Although we prefer the slip velocity concept, since this comes out of the 
calculations unambiguously we could also insist upon retaining the no slip condition even if we 
use the Einsteinian result. In order to obtain correct average global qualities, however (nothing 
more can be expected) we then have to introduce (rather artificially) a layer of thickness D 
close to the wall, in which the viscosity is lower (for positive A) than far away from the wall. 
For example we are free to attribute to that layer the solvent viscosity, which amounts to a 
particle free zone close to the wall. This being the case we get for ~o ~ l 

5D 
A - 2 a '  [4.29] 

so that A is essentially the ratio of this (fictitious) particle free zone to the sphere radius. 
It is this thickness D for Vand (1948) lists the result 

D 
- - =  1.301. [4.30] a 

Vand's calculation, however, rests on a number of assumptions, the basic three being: 
(i) The integral appearing in [4.24b] can be evaluated by using [2.16), i.e. results obtained by 

the method of reflections. With the exception of a region immediately adjacent to the wall (of 
the order of one sphere diameter thick), the method of reflections applies. Thus, if DI + (1/2)D~ 
remains finite for y--, a Vand's first assumption seems indeed reasonable, at least in order to 
obtain a first estimate of A. 

(ii) The particle moves with the fluid. This assumption certainly is not valid. It implies that 
the integrand of [4.24b] should be D~ + (1/2)/)2 (see the remarks following [2.18]). Using (2.16) 
we see that the difference of Di + (1/2)D2 to the correct expression of DI + (1/2)D~ is of the 
order (a/y) 4. Only by retaining nothing but the dominant, i.e. (a/y)3-terms would this difference 
be immaterial (Vand, however, kept terms up to the order (a/y)5). 

(iii) A mirror-image suffices to obtain via the method of reflections the function DI + 
(I/2)D~. Vand himself realized that there was no rationale for this assumption since only the 
normal component of [2.3] can be satisfied with a mirror image. His hope that this would not 
matter very much, is unsubstantiated. Already at the dominant, i.e. (a/y) 3 power does D~ + 
(1/2)D~ differ from the expression--1 + (5/16)(a/y)3--listed by Vand (his [5.10]). 

As a matter of fact, up to 0((a/y)4)t we deduce from [2.15] 

t 

DI+~D2 1 15 a 3 3 a 4 
[4.311 

tFor reasons of consistency we have to stop at that order, although certain terms appearing in D~ + (I/2)D~ can be 
guaranteed to a higher order. 



THE HYDRODYNAMIC WALL EFFECT FOR A DISPERSE SYSTEM 233 

If ,~ is estimated by using only the dominant term of [4.31], i.e. the (a/y) 3 term, then 

85 
A = ~-~ = 1.33 (4.32a) 

including the (a/y) 4 term as well modifies this result to 

755 h = ~ = 1.47. (4.32b) 

Considering this to be a minor modification of [4.32a] suggests that the method of reflections 
suffices, at least as far as an estimate of the slip coefficient A is concerned. Phrased differently, we 
do not expect a drastic change of our 1.4 approximation for ,~, even though the wall layer a < y < 2a 
is not at all properly represented by [4.31]. This conjecture is easily substantiated by using the 
detailed results of T6zeren et al. (1977). Extrapolating their numerical results for the far away bulk 
velocity up to the wall furnishes a value of 1.45 for ,L 

Before ending let us look at the average viscosity (/~), since this will enable us to see the 
fundamental mistake of Guth-Simha (1936) most clearly. 

If we recall [4.11] and [4.17] we can, for y > 2a define a local viscosity. By means of [3.8] 

this can be written as 

f' = MY) = ~, 1 + ~ n Vo 5-Vo ] [4.33] 

For y < 2a no such relation can be written down. However, since [4.22] would have emerged 
from [4.21] even if the expression [4.23] had been employed it is tempting to define an average 
viscosity (/z) by means of [4.33]. Thus, putting for (alL) ~ 1 

with/z(y) given by [4.33] we have 

(ix ) = 2 fot'12 dytz(y) 

(~) =/~. [4.341 

This is remarkable, for it tells us that the average viscosity (which by itself has no physical 
meaning) equals the apparent viscosity, which is the quantity observed in practice. It is not 
believed that this is a generally valid result, i.e. valid beyond the situation of a highly dilute 
suspension of spheres in 2-dim. shear. 

The results of Guth-Simha (1936) seem to prove that point immediately. They studied a 
2-dimensional dilational motion (e.] = 0) of a highly dilute suspension of spheres.? Working 
entirely with/~(y) they list a result for the average viscosity, which, if equated with the apparent 
viscosity, corresponds to a negative slip coefficient. We found, however, a positive slip 
coefficient [4.32]. 

A close look at their calculations reveals the source of this discrepancy: their averaging 
procedure is wrong. This is readily demonstrated if we apply their way of averaging to our 
2-dim. shear flow. Naively assuming that/~(y), defined by [4.33] can be used over the entire 
range and recalling [4.14] Guth-Simha (1936) postulate that the quantity /~G, defined for 
(alL) ,~ I as 

2fo fa 1 , 
u2 5 1 u2 DI + ~ D: 

I ta=gs  dy + ~ ¢o ~----- dy 5Vo ' 
~ - - a  

?Note that for such a motion the rate of strain dyadic of the undisturbed motion has to depend upon position. 
Otherwise the adherence requirement at the wall cannot be met. 
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is the one observed in practice. But by using [4.24] we get for/zo 

. o  = ~ I1 - ' ~  ~OoAo ] , 

with ~.o = A - (5/2). 

[4.35] 

Thus, since/~o has nothing to do with the observed quantity/~o (involving A instead of Ao) 
it is immaterial that ~o is negative (-1.05, according to our estimate). 

SUMMARY AND DISCUSSION 
For a dilute suspension of spheres the theory described in the previous sections takes 

particle-wall interactions explicitly into account. The resulting concept of a slip velocity us for the 
suspension is not new (e.g. Cox et al. 1971). What is new is the fact that this slip velocity can be 
obtained without detailed knowledge of the bulk velocity. Although one can use that approach, too 
(Tfzeren et al. 1977), it is far more economical to focus attention on us from the beginning. 

As our main result, namely [4.22] and [4.24], respectively, shows, only the stresslet S needs to be 
known. This is striking, for in the immediate vicinity of the wall (a < d <2a)  the particle 
contribution to the bulk stress-tensor cannot be related to the stresslet. Yet, if one ignores that fact 
the correct expression for us still emerges. 

The slip velocity us can be cast in a form first suggested by Lamb, 1932. It is found that Lamb's 
coefficient of sliding friction is ([4.27b]) 

u 

1.45aq)o 

1.45a~0 

where ~ is the viscosity of the suspension, a the radius of a sphere and ~Po the volume fraction of 
spheres (~o0 ~ 1). Being positive, the apparent viscosity of a spherical suspension will thus decrease 
with decreasing dimensions of any viscometer. This is the so-called sigma phenomenon. 
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